Teacher notes

Topic E

The density of all nuclei is approximately the same.

Experiments show that the radius of a nucleus of nucleon number A is given by $R=R_{0} A^{\frac{1}{3}}$ where $R_{0}=1.2 \times 10^{-15} \mathrm{~m}$. This means that the volume of a nucleus with nucleon number A is proportional to A :

$$
V=\frac{4 \pi}{3} R^{3}=\frac{4 \pi}{3}\left(R_{0} A^{\frac{1}{3}}\right)^{3}=\frac{4 \pi R_{0}^{3} A}{3}
$$

But the mass of the nucleus is also proportionate to A : it contains A nucleons, each of mass 1 u approximately and so the mass is Au . Hence the density is

$$
\rho=\frac{M}{V}=\frac{A u}{\frac{4 \pi R_{0}^{3} A}{3}}=\frac{3 u}{4 \pi R_{0}^{3}}=\frac{3 \times 1.66 \times 10^{-27}}{4 \pi \times\left(1.2 \times 10^{-15}\right)^{3}} \approx 2 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}
$$

and is independent of A.

